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On Smooth Multivariate Spline Functions 

By Charles K. Chui* and Ren-Hong Wang** 

Abstract. In this paper the dimensions of bivariate spline spaces with simple cross-cut grid 
partitions are determined and expressions of their basis functions are given. Consequently, the 
closures of these spaces over all partitions of the same type can be determined. A somewhat 
more detailed study on bivariate splines with rectangular grid partitions is included. The 
results in this paper can be applied to problems on interpolation and approximation by 
bivariate spline functions. 

1. Introduction. During the past three and a half decades a vast amount of work 
has been done on univariate spline functions and their computational as well as 
approximation properties. Of central importance are, perhaps, B-splines (or basic 
splines) first studied in some detail by I. J. Schoenberg [22]: they not only serve as 
bases of spline spaces, but, with the ingenious simple normalization introduced by C. 
de Boor [4], also provide very efficient spline interpolants and approximants both for 
computational and theoretical considerations. One of the most important properties 
of the normalized B-splines of de Boor is that they form a locally supported 
partition of unity. This fact has been used, for instance, in the investigation of the 
order of monotone approximation by splines [2], [8], [9], [15]. A fairly complete 
survey on the subject of univariate B-splines was given by de Boor [5]. 

In [5], de Boor also introduced the notion of multivariate B-splines which are 
locally supported nonnegative C`k' piecewise polynomials of total degree k. It was 
C. A. Micchelli [19], [20] who developed the very elegant theory of these multivariate 
B-splines. In addition, W. Dahmen [12] also provided their truncated power repre- 
sentations. See also [14] for more information. It should be noted, however, that 
these multivariate B-splines are determined by a given set of "knots" instead of grid 
lines. In fact, the "knots" determine certain simplices which in turn give the grid 
lines that separate the polynomial pieces. Hence, there are generally a fairly large 
number of grid lines. In this paper, we are interested in the study of multivariate 
spline functions that are directly determined by a given grid configuration. More 
precisely, we will consider -multivariate spline spaces S:( A) consisting of all CA 
functions which are polynomials of total degree k in each of the cells of the grid 
partition A. It is important to know the dimensions of these spaces and give explicit 
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expressions of their basis functions. Several conjectures on the dimension of Sk(A) 

where A is a certain triangulation have been made by G. Strang [26], [27]. Also, L. L. 
Schumaker has studied the dimension problem in [25]. In this paper, the basis 
problem of Sk(A), 0 < j < k, will be studied with emphasis on locally supported 
basis functions. When the grid lines are "simple" cross-cuts, we give explicit 
expressions of their basis functions. It will be seen that if A is fairly "simple" and j 

is "large", no locally supported basis functions exist. More surprisingly, if both 
fairly smooth splines are desirable and fairly "simple" grid partitions A are to be 
used, then the closure (in the topology of the given normed linear function space X) 
of the union of Sk(A) over all "simple" grid partitions of the same nature is a fairly 
" thin" subset of X. These "thin" subsets will be determined explicitly for partitions 
with cross-cut grid lines. Therefore, as a rule of thumb, good approximants are 
obtained only when j is small or else A is allowed to be more "complicated". When 
no smoothness condition is required, direct and inverse estimates were given by W. 
Dahmen, R. DeVore, and K. Scherer [ 13], and Dupont and Scott [16]. Also, it is well 
known that much work has been done on tensor product spline approximation (see 
for example [6],[21],[23],[24],[32].) Our techniques in the preliminary results are 
extensions of those used by the second author [29]-[31] in the study of existence and 
representation of multivariate splines under very general grid partitions. The prob- 
lems we are interested in are of a different nature than those on spline-blended 
surface interpolation (see, for example [1], [3], [11], [17], [18]). In order to give as clear 
a presentation as possible, only spline functions of two variables will be discussed. It 
will be clear that our techniques and results can be easily generalized to an arbitrary 
multi-dimensional setting. 

2. Preliminary Results. Let D be a domain in R2 and A a grid of curves that divide 
D into a finite number of cells. Each boundary curve segment that separates two 
adjacent cells will be called a grid-segment (or edge), and the two endpoints of a 
grid-segment will be called grid-points. Hence, grid-points are points of intersection 
of all the curves that determine the grid A. Let Pk denote the collection of all 
polynomials with real coefficients and total degree k; that is, each p E Pk has the 
representation 

p(x, y) = cij Xiy j, 
O?i+jSk 

where cij are real numbers. A function s in C"(D), 0 < < k - 1, will be called a 
multivariate (or, more precisely, bivariate) spline function of (total) degree k (or 
order k + 1) and with smoothness joining condition C' determined by a grid 
partition A, if the restriction of s to each cell of this partition is in Pk. The collection 
of all these bivariate spline functions will be denoted by Sk- Sk(A) S-S(A; D). 
We also use the notation Sk - Sk- 1 In the following argument, we will assume that 
every grid-segment (or edge) Fij that separates two adjacent cells Di and Dj, say, is a 
segment of an algebraic curve: that is, Fij is defined by lij(x, y) = 0, where lij is a 
polynomial in x and y. Throughout, all such polynomials lij will be assumed to be 
irreducible over the real field. Note that Fij = Fji and l = i. The following old 
result of Bezout (cf. [28]) will be used in this paper. 
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LEMMA 2.1. If the number of common zeros of two real-valued polynomials in two 
real variables is greater than the product of their total degrees, then these two 
polynomials must have a nontrivial common factor. 

As an application, we observe that if 

r: l(x, y) =o 

is a grid-segment (where I is an irreducible polynomial), then Grad l(x, y) has at 
most a finite number of zeros on r. Indeed, if the contrary holds, then 1 has 
nontrivial common factors with both al/ax and al/ay. Since 1 is irreducible, 1 must 
divide both al/ax and al/ay, so that both al/ax and al/ay must be identically zero, 
or 1 is a constant, which is not possible. As another application of Lemma 2.1, we 
have the following result. 

LEMMA 2.2. Let D1 and D be two adjacent cells of a partition A with common 
grid-segment rij defined by lij(x, y) O. If s E Sk, 0 f < k, and the restrictions of 
s on Di and Dj are polynomials pi and pj in Pk' respectively, then 

(2.1) Pi -Pj [1ia] 

where Qi is a polynomial. 

We will call [lij ]+I the smoothing factor and Qij the smoothing cofactor of the 
bivariate spline function s across the grid-segment rij from Di and Dj. Note that 
since Fij = Fji or lij = lji, we have 

Qil = -Qii. 

To prove this lemma, we first observe that 

(2.2) axlayrl [pi(x, Y) - p(x, y)] = 0 

for (x, y) E ij, 1 = 0,... ,r and r = 0,... , A. Applying (2.2) for r = 0, we see that 

(pi - pj) and lij are both zero on Fij and must have a common factor by Lemma 2.1. 
Since lij is irreducible, we have 

pi -pj l;J' 

for some polynomial T,. Next, 

aa (Pi - pi) = T, aa iij + lij8 
a 

1 
ax ax ax 

and 

ay(Pi pi) = T, ay lij + iij 
a 

Tl. ay ~~ay ay 

Since Grad lij has at most a finite number of zeros on Jij, as we observed earlier, we 
must have T,(x, y) = 0 for all (x, y) E Fij by using (2.2) for r = 1. Hence 

TI = lijT2 

for some polynomial T2, or 

Pi - p1 = [lij]2T 
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Moreover, for each r, 1 s r s , since O, = 0 on F11, we have, for all (x, y) E Fr, 

axr[l( ) =r! a lZ ry) 

and 

ayr Y)] r a r 

Hence, by repeating the above procedure A - 1 times and applying (2.2) for 1= 0 

and r, r = 2,... ,t, we obtain (2.1) with Ql, =T?1. This completes the proof of the 
lemma. 

An important consequence of Lemma 2.2 is that if A is any grid-point which is the 

endpoint of grid-segments ]7(r, r 1,. . ., N, ordered in the counter-clockwise direc- 
tion around A, then we have 

N 

(2.3) 1 [l,j,r(X, Y)]'' Qij,r(X, Y) 0 O 
r= I 

for all (x, y), where 1r7) is determined by l,J r(X, y) 0 O and Qij,r is the smoothing 
cofactor of the bivariate spline function s across ,J'r7), again travelling in the 

counter-clockwise direction. For simplicity, the above identity will be denoted by 

(2.4) z [11J(x, Y)]A ' Q,J(X, Y) O. 
A 

We will call (2.4) the conformality condition at the grid-point A. This idea is a 

generalization of a certain constraint observed by G. Strang in his study of the 

dimension of C' piecewise polynomials on triangular meshes [26], [27]. 
Choose any cell D* D*(A) of a grid partition A\ of the domain D, and consider 

D* as the source of a flow into all the other cells of this partition. D* will be called a 

source cell, and the flow from D* into the other cells is via a system of one or more 
main streams with branches, subbranches, subsubbranches, etc., in such a way that 

the flow does not pass through any grid-point and reaches every single cell of the 

partition in one and only one way. This requires, of course, that the streams in this 

flow (that is the main streams, branches, subbranches, etc.) never cross one another. 

Of course, the streams cross the grid-segments without touching their endpoints, the 

grid-points. Let s be a bivariate spline in S: and (x, y) any point in D which is not 

on the grid A. Then (x, y) is in some cell D(XY). If D(X Y) happens to be the source 

cell D*, then we have 

S(X , Y ) = Pk*( X, Y) , 

wherep* E Pk. If (x, y) is not in D*, then there is only one way that the flow from 

D* can reach D(X Y) via the system of streams described above. Let C = C(x, y) be 
this stream. Also, let rFj: 1,(x, y) = 0 be the grid-segments of the partition A. We 
introduce the following notation: 

(2.5) [Ij(x y) f= ij(x, y) if C(x, y) crosses ,j, 
0 otherwise. 
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Let Q,J be the smoothing cofactor of the bivariate spline s across rFj from a cell D, to 
its neighboring cell D. (and recall that Qj, = -Q,J although IJ, ) li.). One direction 
of the next result follows immediately from Lemma 2.2. 

THEOREM 2.1. Let s be a bivariate spline function in St, 0 ? < k, whose restriction 
on a source cell D is Pk E Pk. Then 

(2.6) s(x, y) = p*(x, y) + E [1IJ(x, Y)]* 'Qjj(x, Y) 

(x, y) E D, where the summation is taken along the flow described above. Conversely, 
if the functions Q,J in (2.6) satisfy the conformality condition (2.4) at every grid-point, 
then s is in St. 

If (x, y) E D\ A, the above representation formula clearly holds. For (x, y) EE A, 
formula (2.6) is still valid due to the continuity of s on D. If /\ consists of only one 
grid-point, the converse clearly follows, and, in general, it can be established by 
applying mathematical induction. It should be emphasized that the formula (2.6) 
depends on the choice of the source cell D* and its flow system. However, because of 
the conformality conditions at all grid-points that a bivariate spline s must satisfy, 
we could have picked any flow system to represent s. 

3. Rectangular Grid Partition. This and the next sections will be devoted to the 
special case when the grid partition /\ of a rectangular domain D in R2 consists of 
horizontal and vertical lines only. It will be clear that the following argument does 
not depend too much on the shape of D. A more general setting will be discussed in 
Section 4. For convenience we let D be the open unit square {(x, y): 0 < x, y < 1) 
and consider 

O = X-k X Xo <Xl < *.. < Xm < Xm+l 1 

and 

? Y-k Yo < YI < .<Yn < Yn+l Yn+k+ I - 

Our grid partition A = mn will consist of the algebraic curves: x - xi 0 and 
y -yJ = 0, i = 1,. . ,m andj = 1,. . . ,n. The cell with grid-points or vertices (xi, yj), 
(xi+1,yj), (x,+1,y1y), (x1,y,+1), 0<i?m and 0 <jn, will be denoted by 
G.i = (xI, xi+1; YJ, Yp+I) 

Let A = (xl, Y.), 1 < i < m and 1 ?j < n be any grid-point. It is the common 
grid-point of four cells G, - j- I, GI j_ I, G,,j, G, - j which we denote by D,, D2, D3, 
D4, respectively. Hence, the grid-segments F12 and J34 are both determined by 
112(X, y) = 134(x, y) = x- x and those of F23 and 141 by 123(x, y) = 141(x, y) = y 
- y1. As usual, denote the corresponding smoothing cofactors of a bivariate spline 
s E S(AAmn) by Q12(x, y), Q23(x, y), Q34(x, y), and Q41(x, y). 

Let us first consider the case u k - 1: 

LEMMA 3.1. Let s E Sk(Amn) and Q12, Q23, Q34, Q41 be its smoothing cofactors as 
described above. Then Q12, Q23, Q34, and Q41 are constants satisfying Q12 = -Q34 and 
Q23 = -Q41 

This result follows from Lemma 2.2 and the conformality condition at the 
grid-point A. Indeed, by Lemma 2.2 the smoothing cofactors are constants, and by 
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the conformality condition they satisfy 

(Q12 + Q34)(X - X,) + (Q23 + Q41)(Y -J) 0- 

so that Q12= -Q34 and Q23 = -Q41. By applying this lemma repeatedly, we also 
have the following 

LEMMA 3.2. Let c, and C2 be two smoothing cofactors of a bivariate spline in 

Sk(Anm,n) defined by travelling either from two cells on the left of x - x, = 0 to their 
corresponding neighboring cells on the right of x -x, = 0, or from two cells below 
y - yJ 0 to their corresponding neighboring cells above y -Y = 0, then cl = C2. 

An important implication of this lemma is that the representation formula (2.6) in 
this setting is independent of the choice of the flow system in the sense that the 
smoothing cofactors for a different flow system do not change. Indeed, if a cell Do is 
on the same side of -x, G x or y- y, = as the source cell D*, then any stream 
that flows from D* to Do crosses x -x, G ory- y, = G an even number of times, 
so that all the smoothing cofactors across x - G O or y-y, G= cancel, and if, on 
the other hand, Do lies on the opposite side of x-x, = Gor y-y, = G as D*, then 
any stream flowing from D* to Do crosses x-x, = or y -y, = G an odd number 
of times, so that all except one smoothing cofactors across x -x, = or y - y, = 0 
cancel. For convenience, let us select G(( = (xO, xi; y0, yI) as the source cell. The 
above argument yields the following result. 

PROPOSITION 3.1. Any bivariate spline function s in SA( ,,has the following 
unique representation: 

(3.1) S(X' Y) = p*(X, Y) + a, (X- X ) + b, (Y- y,)4 

when p* E Pk and a1,. .. , am, b1. b,, are real constants. 

Here and throughout this paper, we use the standard notation a+ max(a, G) and 
ak= (a+ )k. For computational and other purposes, it is more convenient to use the 
normalized B-splines (cf. [4]): 

(3.2) IB1(x) B,k+l(X) = (xi - X, x1)[x,_,, ...,x,]( -x)+, 

lC,j(x) =C,,k + I(X) =( YI k I) YxA I Y/ 

1i =1...,Im + k + I andj = 1,...,n + k + 1. Since 

mn+k+ 1 n+A 

Cn+k+?I(Y) E B,(x) - E C,(y) 
.= I /J=I 

for all (x, y) E D, we have the following 

PROPOSITION 3.2. The bivariate spline space Sk(/\mn) has a basis given by 

{xU+lyv+?, B(x), C,(y)}, where u, v > O, O < u + v < k-2, and i = 1,...,m + k 
+ 1;j= 1,...,n + k. The dimension of Sk(Amn) is 2(k + 1)(k + 2) + m + n. 

From the above results, it follows immediately that not too many functions on D 
can be accurately approximated by bivariate splines in Sk( Amn) For the sake of 
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convenience in stating this and other results later, we will let X be the Banach space 
Lp(D) if 1 ?p < oo or C(D) if p = oo. We then have the following 

COROLLARY 3.1. The closure in X of the union of Sk(/L) over all rectangular grid 
partitions lA of D is the subspace of all functions which have the form Pk(X, y) + f(x) 
+ g(y) where pk E Pk 

With a little more care, the results on Sk can be generalized to Sk, 0 ? y < k - 1. 
To do this, we return to the notation we introduced earlier in this section concerning 
G1,J A = (xl, yJ), Dl,. ...,D4, "'12,. ...41, and the smoothing cofactors 
Q12(X, Y), . . , Q41(X, y). We have the following result. 

LEMMA 3.3. Let s E Sk, 0 ? ? k - 1, and Q12, Q23, Q34, Q41 be its smoothing 
cofactors in the counter-clockwise direction across F12, "239 134, '41, respectively. Then 

Q12(X, Y) + Q34(X, y) (y -yj)Y?ld(x, y) 

and 

Q23(x, Y) + Q41(X, y) (X - Xl)' ld(x, y) 
for all (x, y), where d E 

Pk-2,,-2 In particular, if ,u > (k - 2)/2, then Q12(x, y) + 
Q34(X, Y) = Q23(x, Y) + Q41(X, y) = 0 for all (x, y). 

To prove this lemma, we return to the conformality condition (2.4) and obtain 

(3.3) (Q12(x, y) + Q34(X, y))(x -XJA+1 

+ (Q23(X, Y) + Q41(X, Y))(y - yL?+I 0. 

Since (x - xl)'+' and (y- yJ)+? are relatively prime, we have Q12 + Q34 

(y -y1)'+ l T, and Q23 + Q41 = (x - xl)t+lT2 for some TI, T2 E Pk-21- 2.2 Putting 
these back into (3.3) gives 

(T,(x, y) + T2(x, y))(x - X1) I'(y - yj)y+ 0. 

Hence, T, = -T2= d EPk_2A-2. If y > (k-2)/2, it is clear that T1 and T2 are 
identically zero. 

Next we will derive a representation formula for bivariate spline functions in Sk, 
O < ,u < k - 1. Although we can pick any source cell, we will again choose D* = Goo 
for the sake of illustration. From the conformality condition (3.3) and using Lemma 
3.3, it is not difficult to see that the representation formula we will obtain is 
independent of the flow system. Hence, we will choose a main stream flowing to the 
right crossing x -x = 0,... ,x - xm = 0 into the cells Glo,...,Gmo consecutively, 
and a main stream flowing along the positive y-axis crossing y - Yi = 0,... ,y -Yn 
= 0 into the cells GOI ... , GOn consecutively. The branches of this flow system will 
be travelling from each of the cells G1o, ... , Gmo parallel to the north-bound main 
stream into the remaining cells of the partition m n' Hence, to reach Gij from 
D* = GOO, the stream first travels eastward crossing x -x = 0... . ,x -x = 0 and 
then northward crossing y-y, = Y , ,... ,y -yj = 0. Suppose that the restriction of s 
on D* isp* E Pk. Then for (x, y) E G1o we have 

s(X, y) =pZk(X, y) + (x - 
xp)'+lbp(x, y) 

P=1 
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by using Lemma 2.2. Similarly, for (x, y) E G0J, we have 

I 

S(x, y) = pk(x, y) + z (y - y,)'+ c,(x, y), 

where b ,...,b,I c EE Pk are smoothing cofactors. Call c1 = co, and 
denote the smoothing cofactors from GI,,_ to G,, by cl,. Then by using Lemma 3.3 i 
times, we have 

c11(x, y) --c1(x, y) + E (x - xp)'+?dp1(x, y). 
P -' 

Hence, if (x, y) C GI,, we have 

s(X, y) = pk(x, y) + (x - xp)' bp(x, y) 
P= I 

+ (y -y,)'+'Ic,(x, y) + (x-x p)'+ 'dp,(x, y) 
/=I 1 = 

By using the plus notation, we have 

m tl 

s(X, y) = pk*(x, y) + : bp(x, y)(x - x y2+' + c,(x, y) (y-y)?++ 

m n 

+ 2 2 dp(x, y)(x-xp)A+1 (y-y,)A+1 + ~~~~~~~ 
P=1 /=I 

Here, we have of course used the conformality condition at every grid-point. That is, 
we have the following result. 

THEOREM 3.1. Any bivariate spline function s in Sk(1Amn), 0 ? ?? k - 1, has the 

following unique representation: 

m n 

(3.4) s(x, y) = p*(x, y) + 2 bp(x, y)(x - + x, c,(x, y)(-y ? 

P=1l= 

m n 

+ 2, 2, dp, (x, y) (x -xp )A+ ' (y - yl)A+' 
P=1 1=1 

where p* C Pk, bp and cl E Pk-,-,l and dpl , Pk-2A-2. If, in particular, u > 

(k - 2)/2, then 

m n 

(3.5) s(x, y) = p*(x, y) + 2 bp(x, y)(x - xp)+' + , c,(x, y 
P=1l= 

Here and throughout this paper we use the notation P, = {0} when I < 0. There 
are many important consequences of this theorem. We first note that since the 
tensor-product spline functions of order ((fi + 2), (g + 2)) are dense in X, where 
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X = L,,(D) if 1 < p < oo and X = C(D) if p = oo as we defined earlier, we have the 
following 

THEOREM 3.2. The closure in X of the union of SR(/A) over all rectangular grid 
partitions lA of D is all of X if and only if ,u (k - 2)/2. If ,u > (k - 2)/2, then the 
closure is the space of all functions 

Pk(X, Y) + qk-,1_(x, y)f(x) + rk-, l(x, y)g(y), 

where pk E Pk and qk_AI, rk -,- E Pk_AI, 

We next study the nature of locally supported bivariate spline functions in terms 
of the normalized B-splines. 

THEOREM 3.3. The bivariate spline space Sk(1\mn), 0 < < k - 1, has dimension 

+[(k + 1)(k + 2) + (m + n)(k - -)(k - + 1) + mn(k - 2, - 1)+ (k -2p)] 

For ,u > (k - 2)/2, it is spanned by 

21 ={txuyv, Xay B,B1+2(X), X AYC+2(Y) }I 

where k - u-1 < u, v ? ,u and 2k - 24u-1 < u + v < k, i = 1,.. .,m + ,t + 2, 
j = 1, . . I n + a + 2, 0 a + b -< k -, 1, 0 < c + d ? k - 1. For , 
(k - 2)/2, it is spanned by 

2 
= 

txk-2A-1+ayh bB 2(X) yk 21?cxdc +2(Y), xUyVBpA+2(X)Cq,A+2(Y)} 

where 0 < a + b < ,u, 0 < c + d < ,u; i, p = 1,...,m + ,u + 2;j, q = 1,...,n + y + 
2, and 0 < u + v < k -2 -2. 

The dimension of SA(A\m ) can be found easily using the representation formula 
(3.4), where the spanning functions are clearly linearly independent. For computa- 
tional and theoretical purposes it is advantageous to keep all the normalized 
B-splines Bi1,+2(x) and Cj?,+2(Y). However, in doing so, we must also retain all 
coefficients xayI, 0 < a + b < k - -1 of Bi ,,+2(X) and CJ,I,+2(Y) in the case 
y > (k - 2)/2, in order to generate all the spline elements Xayb(X - x )++' and 

xy(y - yj)t++, < a +b k-y-1,ki= 1,...,m + t+ 2, and j= l, ...,In+ 
y + 2. The elements XaybBi, +2(x) and xcydc> 2(y), 0 < a + b < k - - 1 and 
0 < c + d < k - -1, have already generated the polynomials x+?uyb and xcyd+v, 

0 < u, v < t + 1, 0 < a + b < k- - 1 and 0 < c + d < k- - 1. For ? < 
(k - ,)/2, in order to generate all bivariate splines Xayb(X - Xi)1)+l(y YJ)/+ 
0 < a + b < k- 2-2, i = 1,...,m, j = 1,...,n, we must again keep all the 
coefficients xayb, 0 < a + b < k - 24 - 2, of B1,,?+2(x)Cj>,+2(Y). In doing so, we 
have already generated all the splines xuyv(x - x,)++' and xPyj(y - y.)a+, with 
the exception of Xk-2-l?+ayb(X - Xi)L+ I and yk-2Ia- l +aXb(y - y )/?+ 1 where 0 ? 

a + b < and i = l,...,m + y + 2,j 1,...,n + t + 2. All thepolynomialsin Pk 
have already been generated. That is, we have shown that 2, 1 and 6/2 are the 
"smallest" spanning sets of S/k(LAmn) for u > (k - 2)/2 and y < (k - 2)/2, respec- 
tively, if we want to use all of the B-splines Bi ,+2(x), CJ,,+2(Y), and 

Bi,,4+2(X)Cj,A+2(Y). It is obvious that the spanning sets 6T and 6T2 are much larger 
than the dimension of Sk(Gmn). But with the normalized B-splines, it is more 
convenient to construct efficient approximants. 
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4. Extensions and Remarks. Rectangular grid partitions are useful when the 
domain is rectangular. However, in applications such as studying stress, strength and 
pressure in constructions of dams and other structural designs where the domains of 
interest are polygonal, it is necessary to use cross-cut partitions with more than two 
directions in order to obtain good results near the boundary. A line segment is called 
a cross-cut of D if it divides D into two cells and its endpoints lie on AD, the 
boundary of D. A grid A of a finite number of cross-cuts of D is called a cross-cut 
grid partition of D. Hence, each grid-segment (or edge) of a cell is a segment of a 
cross-cut of A. Note that if D is not convex, more than one cross-cut may lie on the 
same line. A cross-cut grid partition is said to be a simple cross-cut grid partition if 
no more than two cross-cuts meet at a grid-point. 

We summarize some of the main results which are generalizations of those in the 
above section to an arbitrary simple cross-cut grid partition. Let 

-lt = {(t + 1)(t + 2) i f t ,> O, 
0 ~~~~if t < 0. 

First we give the dimension of the smooth bivariate spline space. 

LEMMA 4.1. Let A be a simple cross-cut grid partition of a simply connected domain 
D, consisting of L cross-cuts and V grid-points. Then the dimension of Sk( A, D) is 

-1(k) + L-q(k - - 1) + V-q(k - 24 - 2). 

To give an explicit basis for Sk( A, D), it is more convenient to group the 
cross-cuts of the partition. Let (a,, b,),... , (aN' bN) be pairwise linearly indepen- 
dent ordered pairs, c = [c1,] a matrix of numbers, 

'P: a,x + biy + cip = 0 

a collection of straight lines, and let the simple cross-cut grid partition v = I\(N, c) 
of D consist of cross-cuts 

lij = liPJI j = 1, ... ,tl and i = I1,...,IN, 

where each 1,,j is a segment of the line J>p. Each cross-cut IIJ = lij divides D into 
two cells: the one not containing the source cell D. will be denoted by DJ= DIPJ 
and the other by D' = D'P. We define the function (1,j), = (IIPJ)# by 

f)a1x + bly + C1P if (x, y) EE i 

(iJ)#(x, ' 10 ( Oif (x, y) E D' U 1,, 

and (1J)#+'I(X, Y) = [(IJ)(x, y)]-L?. In addition, define the index sets 

2(i, r) = {(j, s): lij and Irs have a common grid-point lying in D) 

and let w(i, r) be the cardinality of S2(i, r). We have the following 

THEOREM 4.1. Let N 2 2 and 0 < ? < k. Then the collection 

C {X yb, Xcyd(lij)' 

+ 

XUyV(lhj)y+I(lrs)#+} 

where 0 < a + b ? k, 0 < c + d < k - - 1, 0 < u + v < k - 2, - 2, h # r, and 
(j, s) E 2(h, r), is a basis of Sk(LA). 
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Here the functions XUyV(lhj)#+I(lrs)#?I are to be deleted from C if k < 2, + 2. If 
N =2, D is the unit square {(x, y): 0< x, y < 1), rip: x + cp= 0 and F2,: 
y + c2p = 0 (xp = -cl, and y,= -c2,), and the source cell D* is {(x, y): 0 < x < 
xl, 0 < y < y1}, then the "# " functions become the" + " functions and Theorem 3.1 
is a particular case of Theorem 4.1. 

As an immediate consequence, we can decide how "well" the bivariate splines in 

Sk(N) U Sk(A(N,c)) 
C 

approximate. That is, we have the following 

COROLLARY 4.1. The closure of Sk(N) in the topology of uniform convergence on 
compact subsets of D is C(D) if and only if ,i < (k - 2)/2. If y > (k - 2)/2, the 
closure of Sj( N) is the space of continuous functions of the form 

Pk(X, Y) + ql(x, y)f1(alx + bly) + * +qN(X, y)fN(aNX + bNY), 

where f1,... .fN are continuous functions of one variable, ql,...9qN EE Pk-1,_ and 
Pk E Pk. 

Of course, if D is bounded, the supremum normed or Lp normed topologies can be 
used. 

An important problem is to find a nonnegative locally supported basis (or even 
spanning set) of St(A(N, c)) by using the basis C. However, we remark that there are 
no locally supported bivariate spline functions in C"(D) for "large" y as in the 
following: 

PROPOSITION 4.1. There are no locally supported functions in Sk(/L(N, c)) for 
y > (k - 2)/2. 

In this paper we have not considered the important case where the cross-cut grid 
partitions are not simple and the even more important case where /\ is an arbitrary 
grid partition. We believe, however, that our techniques can be extended to study 
these important problems as well as the structure of bivariate spline functions with 
grid partitions consisting of arbitrary irreducible algebraic curves. If the cross-cut 
grid partition A is not simple, it is in general necessary to invert very complicated 
matrices to determine the basis functions of Sk( \, D) explicitly. These problems will 
be studied at a later date. We are grateful to the referee for many valuable 
suggestions on the revision of the manuscript and for supplying us with some 
references. We would also like to thank Professor C. de Boor for several useful 
comments and for sending us a copy of [7]. This very interesting paper [7] answers 
the important question "How effective are multivariate splines in approximation?" 
instead of studying the dimension and basis problem as we do in the present paper. 
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